

European Training Network for the Remediation and Reprocessing of Sulfidic Mining Waste Sites

'Advanced Leaching of Cu-Zn, Zn-Pb and Cu-Zn-Pb Tailings using Microwave Heating'

Nor Kamariah; Jeroen Spooren; Koen Binnemans VITO (Flemish Institute for Technological Research), Mol – Belgium Start Date : December 1, 2019

Objective, Milestones & Deliverables

Objective:

Development of advanced metal-extraction processes using

Setting Boundary Conditions:

• Material Characterizations -> XRD, XRF, SEM, TGA-MS, ICP-AES, Spectrophotometer

• Thermodynamic Modelling

microwave (MW) heating to increase selectivity, efficiency and kinetics of hydro- and solvometallurgical leaching systems for sulphidic tailings

Milestones:

MW-assisted hydro/solvometallurgical leaching processes with :

> 15% energy saving,

> 15% solvent/reagent saving,

> 50% shorter leaching time (with respect to conventional

heated leaching processes)

Deliverables:

- D2.4: 1st peer-reviewed paper, M25
- D2.11: 2nd peer-reviewed paper, M48

MW-Pretreatments:

- MW application to change physical properties of sulphidic tailings
- MW application to change chemical properties of sulphidic tailings -> MW-assisted roasting

MW-Assisted Leachings:

- Hydrometallurgical leaching
- Solvometallurgical leachings :
- 1) Molecular organic solvents based system
- 2) Ionic liquids based system
- 3) Deep eutectic solvents based system

Current Research:

Solvometallurgical Leaching based on Molecular Organic Solvents

Goal:

<u>____</u>

leves Corv

Lundin Mining

Cu Zn

Saxonia GmbH

Cu Zn Pb

5

Plombière

Zn Pb

To develop ammoniacal-alcohol systems to selectively recover Cu, Pb, Zn

Solubility test of metal sulphates in alcohols

Solubility test of ammonium salts in

760

50

0.160

0.023

240

Conclusions

Solubility of metal sulphates:

 $CuSO_4$: H₂O > Methanol > Ethanolamine > Butanol > Ethanol $ZnSO_4$: H₂O > Ethanolamine > Methanol > Ethanol > Butanol *PbSO*₄ : Ethanolamine > H_2O ; (Methanol, Ethanol, Butanol : below reporting limits)

Outlooks

- Analysis of soluble ammonium salts in alcohols using spectrophotometer
- Development of ammoniacal-alcohol systems, to be tested to metal sulphate and metal oxide samples
- Application of MW-assisted roasting and MW-assisted leaching based on ammoniacal-alcohol systems for SULTAN's samples (SUL_FR_01 and SUL_NC_02)

Method for MW-assisted roasting and leaching experiment:

40

20

0.013

0.740

4

SUL_FR_01 & SUL_NV_02 samples will be dried at 40°C until reaching its constant weights

> The samples will be pretreated by MW-roasting at different temperatures and times to change its physical & chemical properties

0.7

1.4

2.4

0.3

1.1

MW-assisted leaching, using ammoniacal-alcohol as leaching agents, will be applied to the samples at different temperatures & times

> Leachates & residues will be analysed to measure the efficiency and selectivity of ammoniacal-alcohols in recovering Cu, Pb, Zn

0.056

< 2.4^{*}

< 2.4*

< 2.4*

0.13

67

50

82

1.2

* : below reporting limits

0.2

1.5

0.8

0.6

0.7

This project has received funding from the European Union's EU Framework Programme for

 H_2O

Methanol

Ethanol

Butanol

Ethanolamine

