

European Training Network for the Remediation and Reprocessing of Sulfidic Mining Waste Sites

Synthesis of new bio-based mining chemicals for froth flotation

Fiber and Particle Engineering research unit, University of Oulu Feliciana Ludovici, Ossi Laitinen and Henrikki Liimatainen

Task 1: Fabrication of cellulose nanofibers (CNF) and cellulose nanocrystals (CNC).

Task 2: Characterization of functionalized CNFs and CNCs.

Task3: Improvement of froth flotation system.

Objectives Modific

■ Modification of bio-based (cellulose, nanocellulose) chemicals through new environmentally friendly reactions;

□ Determine the selectivity of the new green nanoparticle with selected mine tailings;
 □ Improve froth flotation parameters.

Milestone

■ Design selective and effective flotation chemical for mining industry. Flotation recovery of >70% of the selected metals (Cu, Zn and Pb) from selected Cu-Zn, Zn-Pb and Cu-Zn-Pb tailings.

Abstract

Cellulose is the most abundant renewable polymer. It offers a green alternative source to develop sustainable chemicals that could replace the present synthetic additives, largely used in froth flotation. In the present study, we introduce a new environmentally friendly approach to produce potential froth flotation chemicals.

Figure 1. From tree to nanocellulose: mechanical, chemical, or enzymatic methods can be used to fabricate celluloses nanomaterials.

Results

Synthesis of cellulose nanocrystals (CNC) using deep eutectic solvent (DES).

Choline Chloride Oxalic acid dihydrate

Dissolving pulp

Fabrication of cellulose nanofibers (CNF) and cellulose nanocrystals (CNC) with a thiol-functional moieties (3-mercaptopropyl-trimethoxysilane) through an aqueous silylation.

The hydrophobicity of both CNFs and CNCs increased following the introduction of the new thiol functional moieties (Table 1).

Contact angle	CNF	Si-CNF	Si-CNF [0.5]	Si-CNF [1.5]	Si-CNF [3]	CNC	Si-CNC [3]
Θ	51.20°	53.27°	79.33°	67.33°	70.07°	46.47°	63.87°
XPS	CNF	Si-CNF	Si-CNF [0.5]	Si-CNF [1.5]	Si-CNF [3]	CNC	Si-CNC [3]
S%	0.18	6.97	6.97	3.65	7.67	0.07	5.77
Si%	0.33	7.53	7.54	4.37	8.54	0.39	6.79

Table 1. Contact angle measurements and XPS analyses

Contact information:

Feliciana Ludovici (M.Sc.), <u>feliciana.ludovici@oulu.fi</u>

Dr. Ossi Laitinen, <u>ossi.laitinen@oulu.fi</u>

Professor Henrikki Liimatainen, <u>henrikki.liimatainen@oulu.fi</u>

According to TEM images (Figure 2) cellulose nanofibers existed as long and elongated filaments and cellulose nanocrystals as stiff rods. The width of individual CNF typically varied from 3 to 8 nm, while their length ranged from 100 nm to several micrometers. The width of individual CNC varied from 6-14 nm, while their length ranged from 50-360 nm.

Figure 2. TEM images of a) CNF, b) Si-CNF, c) CNC and d) Si-CNC.

Pyrite froth flotation: grade and recovery

Conclusions

- The silylation reaction in aqueous condition proved to be an environmentally friendly approach for the functionalization of green nanoparticles (CNFs and CNCs) with thiol moieties.
- Grade and recovery of floated pyrite improved after sonicating, using sodium isobutyl xanthate (SIBX, industrial collector).
- The silylated cellulose nanofibers (Si-CNF [0.5]), has been tested as collector in the pyrite flotation; the same parameters used with SIBX were studied.
- The low pH of mixture was found to result in flocculation of the mineral.

Next step

Further tests using the green nanoparticles (Si-CNF [0.5]) are required. The following approach will be perform pyrite flotation at higher pH, changing the amount of the nanocellulose collector.

